Электропроводность меди по маркам


Материал М1 Челябинск

Без стали не обходится ни одно производство, будь то тяжелое машиностроение или изготовление бытовых электроприборов. Существует множество марок этого продукта, а также большое количество форм отпуска. Наша компания реализует материал М1 большими партиями и с минимальной наценкой. Для уточнения свойств и характеристик конкретной марки можно обратиться к менеджерам компании.

Как и вся продукция, материал М1 закупается у ведущих производителей. Поэтому мы готовы со всей ответственностью давать гарантию на качество. Минимальное количество посредников определяет и низкую стоимость. Вкупе с быстрой доставкой, это дает возможность нашим бизнес-партнеры вести стабильное и взаимовыгодное сотрудничество.

Помимо отпуска, в форме той или иной детали (заготовки), наша компания реализует обработку металлов. Все мероприятия проходят четкий контроль на соответствие ГОСТа и правилам. Специалисты нашего предприятия осуществляют такие работы как оцинкование, создание деталей по чертежам заказчика, производство отливок, изготовление различных профилей и многое другое.

Имея в арсенале новейшее оборудование и огромный, опыт мы можем предложить проверку изделия по ряду параметров, таким как прочностные характеристики, химический состав, чистота сплава и так далее.

Каждому покупателю предложен огромный ассортимент продукции различного формата, а также актуальных услуг и работ. Чтобы быстрее разобраться и выбрать товар соответствующий потребностям, нужно связаться с менеджером компании и получить развернутую информацию по всем интересующим вопросам.

Состав и характеристики

Прочие элементы в сумме должны составлять не более 0,1%. В составе примесей могут содержаться следующие элементы, не более (ГОСТ 859-2001):

  • железо – 0,005%;
  • никель – 0,002%;
  • сера – 0,004%;
  • мышьяк – 0,002%;
  • свинец – 0,005%;
  • цинк – 0,004%;
  • кислород – 0,05%;
  • сурьма – 0,002%;
  • висмут – 0,001%;
  • олово – 0,002%.

Медный сплав М1 имеет отличные физические характеристики: высокую электропроводность и низкое (0,018 мкОм) удельное электрическое сопротивление, которое после термообработки отжигом снижается ещё на 2,8%. Пластические свойства сплава позволяют применять его для изготовления деталей, использующихся в неподвижных соединениях с эксплуатационной температурой до 250°C

Из-за очень низкого содержания примесей стоимость меди М1 на 20% выше, чем другой популярной марки, М2. Различные виды медного проката, изготовленного из сплава марки М1, широко используются в криогенных производствах. Благодаря термоустойчивости, его вязкость, прочность и пластические свойства в условиях экстремальных температур не изменяются.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды — это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование. Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди – это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных сплавов меди и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице — это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Марки меди для электротехники и вообще

Марки меди состоят из буквы “М”, что значит медь. Далее следует цифра от 0 до 4. Иногда затем встречается одна из букв, которые характеризуют способ получения металла: к — катодный, р — раскисленная с низким остаточным фосфором, ф — раскисленная с высоким остаточным фосфором, б — бескислородная. Бескислородная это М0, а раскисленная — М1. Существуют множество марок меди, рассмотрим некоторые:

Специальная марка меди — М1Е. Это электротехническая медь, которая выпускается в виде шин, прутков различного диаметра и сечения. Она бывает особо твердой, твердой, полутвердой и мягкой. Проводимость у мягкой меди на пару процентов выше.

Выпускается в форме шин, прутков, круга. Прутья в свою очередь имеют диаметр от 5 до 40мм и форму сечения — круг, квадрат, шестигранник. У данного типа меди ограниченный срок хранения — до года у мягкой и полгода — у твердой.

Основные свойства меди

Физические свойства

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток, протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Химические свойства

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) – верхнего слоя платины. Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Прутки медные круглые (по ГОСТ 1535-91 в ред. 2001 г.)

Стандарт распространяется на тянутые медные прутки круглого, квадратного, шестингранного сечения и прессованные прутки круглого сечения

  • Диаметры прессованных (горячекатаных) круглых прутков, мм:
    20, 22, 28, 30, 32; 35; 38; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100, 110, 120, 130, 140, 150.
  • Диаметры тянутых прутков, мм:
    3; 3,5; 4; 4,5; 5; 5,5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 20; 21; 22; 24; 25; 27; 28; 30; 32; 33; 35; 36; 38; 40; 41; 45; 46; 50. За диаметр квадратных и шестигранных прутков принимают диаметр вписанной окружности.

Прутки тянутые изготовляют

  • мягкими (отожженными) — М,
  • полутвердыми — ПТ,
  • твердыми — Т;

по точности:

  • высокой — В,
  • повышенной — П,
  • нормальной — Н.

ГОСТ 1535-91 предусматривает размеры

прутков прессованных круглых и тянутых круглых, квадратных и шестигранных.

Прутки изготовляют из меди марок

M1, М1р, M2, М2р, М3 и М3р.
Медь марки М1Е применяют только для изготовления токопроводящих деталей.
Примеры обозначений:

  • Пруток тянутый (Д), круглый (КР), высокой точности изготовления (В), твердый (Т), диаметром 10 мм, немерной длины (НД) из меди M1, для обработки на автоматах (АВ):

Пруток ДКРВТ 10НД M1 АВ
ГОСТ 1535-91

  • То же, шестигранный (ШГ), повышенной точности (П), мягкий (М), диаметром 19 мм, длиной 3000 мм, из меди M2:

Пруток ДШГПМ 19 х 3000 M2
ГОСТ 1535-91.

Механические характеристики

Сечение, ммσB, МПаd5, %d10d10Твёрдость по Бринеллю, МПаHV, МПа
Лента в состоянии поставки по ТУ 48-21-854-88 (образцы)
0.2-3.53≥36
≤2.5≥310
2.5-3.53≥284
Лента холоднодеформированная прямоугольного сечения в состоянии поставки по ГОСТ 16358-79 (образец)
0.26-0.3≥210≥25
Лента холоднокатаная 0,05-2,0 мм в состоянии поставки по ОСТ 4.021.077-92 (образцы поперечные)
200-260≥36
≥290≥3
Ленты и листы (≥0,5 мм) в состоянии поставки (образцы поперечные)
≥200≥30
200-260≥45≥36≥5540-65
240-310≥15≥12≥7565-95
≥290≥6≥3≥9590-110
Листовой прокат в состоянии поставки по ОСТ 4.021.049-92 (образцы поперечные)
0.4-10200-260≥36≥55
0.4-10≥290≥3≥95
Прутки по ОСТ 4.021.019-92, ГОСТ 1535-2006 в состоянии поставки (образцы продольные)
≥190≥35≥30≥35≥40
≥200≥40≥35≥4040-60
≥240≥15≥10≥6070-95
≥270≥8≥5≥7090-115
Прутки тянутые шестигранные по ОСТ 4.021.040-92 (образцы продольные)
6-10≥200≥40≥35
6-10≥270≥8≥5
Трубы тянутые прямоугольного и квадратного сечения в состоянии поставки по ГОСТ 16774-78
≥200≥35
Трубы ходолнодеформированные и прессованные в состоянии поставки по ГОСТ 617-2006 (в сечении указан наружный диаметр, в скобках даны значения для труб повышенной пластичности и прочности)
≤360≥200 (210)≥38≥35 (40)≤55
≤360≥240 (270)≥10≥8 (8)
≤200≥190≥32≥30≤80
200≥180≥32≥30
≤360≥280 (310)90-135
Фольга холоднокатаная твердая 0,015-0,050 мм в состоянии поставки по ГОСТ 5638-75, ОСТ 4.021.094-92
≥290

Как получают медь?

Медь, используемая в проводах и кабелях достаточно высокой чистоты. Для её получения используют медные руды (сульфидные, оксидные и смешанные). Напомню, что такое сульфидные руды — это ископаемое сырье, которое добывается в природе и состоит из тяжелого металла (руда), серы(сульфид) и разных примесей.

На долю сульфидных руд приходится почти вся добыча и запасы меди (среди рудной добычи). Самыми распространенными минералами по залежам и целесообразности добычи среди сульфидных руд являются — халькопирит (CuFeS2), халькозин (Cu2S), борнит (Cu5FeS4).

название минералахим.формула% медицвет
халькопиритCuFeS234,5золотой, желтый
халькозинCu2S79,8черный, серый, синий
борнитCu5FeS463,3красный, медный

В общем, на первом этапе добывают медьсодержащие руды.

Затем добытые руды необходимо очистить от всех примесей и посторонних металлов, чтобы на выходе получилась медь. Для этих целей используют следующие методы: пирометаллургический, гидрометаллургический и электролиз. Например, после пирометаллургического метода мы получим слитки меди, в которых самой меди будет 90 процентов. Неплохо, однако можно и лучше.

Затем эту черновую медь доводят до 99,99% чистоты методом электролитической очистки и мы получаем то, что и используется в энергетике.

Описание

Медь М1 применяется: для производства проводников тока; проката; высококачественных бронз, не содержащих олова; изделий криогенной техники; круглых тянутых тонкостенных труб; холоднокатаных фольги и ленты, холоднокатаных и горячекатаных листов и плит общего назначения; проволоки для изготовления плетенок металлических экранирующих типа ПМЛ, предназначенных для экранирования проводов и кабелей; горячекатаных и холоднокатаных анодов, применяемых для гальванических покрытий изделий; холоднодеформированной ленты прямоугольного сечения с толщиной 0,16−0,30 мм, предназначенной для коаксиальных магистральных кабелей; радиаторных лент, предназначенных для изготовления охлаждающих трубок и пластин радиаторов; тянутых труб прямоугольного и квадратного сечения, предназначенных для изготовления проводников обмоток статоров электрических машин с жидкостным охлаждением; профилей для изготовления роторов погружных электродвигателей; круглой сварочной проволоки и круглых сварочных прутков тянутых и прессованных диаметром от 1,2 до 8,0 мм, предназначенных для автоматической сварки в среде инертных газов, под флюсом и газовой сварки неответственных конструкций из меди, а также изготовления электродов для сварки меди и чугуна.

Примечание

Медь М1 получают переплавкой катодов. Медь марки М1 по химическому составу соответствует меди марки Cu-ETP по Евронорме EN 1652:1998.

Механические свойства меди
Механические свойства различных марок меди при стандартных статических испытаниях на растяжение при температуре 20°С незначительно отличаются друг от друга.

Механические свойства бескислородной меди М16 при стандартных статических испытаниях на растяжение приведены в табл. 1.

Табл. 1. Механические свойства бескислородной меди марки М1б

Свойства Состояние
деформированное отожженое
Временное сопротивление σb , МПа 340…450 220…250
Предел текучести σ0,2 , Мпа 280-420 60-75
Относительное удлинение δ , % 4…6 40…50
Относительное сужение ψ, % 35…45 70…80
Твердость по Бринеллю, HB 90…110 45
Предел выносливости σ-1, Мпа, (Т=108 циклов; kσ*=1) 100…120 70…80
Ударная вязкость KCU, МДж/м2 1,0 1,70

*kσ — коэффициент концентрации напряжений

Влияние степени холодной деформации и температуры отжига на механические свойства меди показано на рис. 1 и 2.

Рис. 1 Влияние степени холодной деформации (%) на механические свойства меди: 1 — кислородсодержащей; 2 — раскисленной фосфором, с высоким остаточным содержанием фосфора

Рис. 2. Влияние температуры отжига (в течение часа) на механические свойства кислородсодержащей меди М1

Содержание кислорода в меди влияет на ударную вязкость и технологическую пластичность.

Например, ударная вязкость горячекатаных медных полос (99.9% Cu) с различным содержанием кислорода составляет:

О2, % 0,026 0,030 0,034 0,042

KCU,кДж/м2 860 560 510 270

Влияние кислорода на технологическую пластичность на при­мере медной проволоки диаметром 2,6 мм в твердом состоянии и с содержанием меди 99,90% следующее:

Способ получения Число гибов при радиусе равном 5 мм Число скручиваний загиба, на длине 152 мм
Бескислородная 12 92
Бескислородная 7 45

Медь и многие ее сплавы имеют зоны пониженной пластичности («провала» пластичности). При этом у кислородсодержащей меди наблюдается явно выраженная зона пониженной пластичности при температурах 300…500°С; у меди, раскисленной фосфором и с большим его остаточным содержанием (0,04%), также наблюдается пониженная пластичность в этом интервале температур. С повышением чистоты меди зона пони­женной пластичности уменьшается, а у бескислородной меди высокой чистоты (99,99%) эта зона практически отсутст­вует. Зона пониженной пластичности отсутствует и у меди, раскисленной бором (0,01% В).

При отрицательных температурах медь имеет более высокие прочность и пластичность, чем при температуре 20°С.

Механические свойства меди, на примере применяемой для электродов контактной сварки, при высоких температурах приведены в табл. 2.

Табл. 2. Механические свойства меди при высоких температурах
СвойстваТемпература, °С
20200300400500600700
Временное сопротивление σb , МПа220200150110705030
Предел текучести σ0,2 , Мпа60505040302010
Относительное удлинение δ , %45454038475771
Относительное сужение ψ, %9088777386100100
Твердость по Виккерсу, HV504038351919
Ударная вязкость KCU, МДж/м21,71,51,41,41,20,90,8
Длительная твердость HV (в течение 1 часа)251065

Характеристики упругости. Упругие свойства изотропного материала характеризуются модулями нормальной упругости Е (модуль Юнга), сдвига G и объемного сжатия Есж, а также коэффициентом Пуассона (µ). Значения модулей Е и G в интервале температур 300… 1300К уменьшаются по линейному закону. Лишь в области низких темпе­ратур наблюдается отклонение от равномерного изменения модулей (табл. 3).

Табл. 3. Модули упругости и сдвига меди при различных температурах
Модули, ГПаТемпература, К
4,210020030050070090011001300
Е14113913412811510389,776,863,7
G5049,547,344,737,83124,118,511,5

Регламентированные механические свойства продукции из меди при различных способах изготовления, состояниях поставки и размерах приведены в табл. 4 — 7.

Как правило, на лентах толщиной менее 0,5 мм, а также на лентах толщиной 0,5… 1,5 мм в мягком состоянии, используемых для штамповки, временное сопротивление и относительное удлинение не определяют, а проводят испытания на выдавливание лунки по Эриксену (см. табл. 5).

Табл. 4. Плоский прокат из меди. Размеры и механические свойства
Продукция, стандарт или технические условияМаркаИзгот.Сост. пост.Толщина, ммВременное сопротивление σb , МПаОтносительное удлинение δ10, %
не менее
Плиты из раскисленной меди, ТУ 48-21-517-85M1pГК75…11О18020
Листы общего назначения, ГОСТ 1173-2006M1, M1p, М1ф, М2, М2р, М3, МЗрГК3…2520030
ХКМ0,05… 12200…26036
ПТ240…31012
Тв2903
Листы и полосы повышенного качества ТУ 48-21-664-79M1ЛХКМ3…820036
ЛГК8…1020030
ПХКМ3…620036
Шины для электротехнических целей, ГОСТ 434-78M1ХКМсв. 735
Ленты общего назначения, ГОСТ 1173-2006M1, M1p, М1ф, М2, M2p, М3, МЗрХКМ0,1…6200…26036
ПТ240…31012
Тв2903
Ленты для коаксиальных магистральных кабелей, ГОСТ 16358-79M1хкМ0,16…0,3210δ5≥25
Ленты для капсюлей, ГОСТ 1018-77M1, M1p, М2, M2pХКМ0,35…1,8620036
Ленты для электротехн ических целей, ТУ 48-21-854-88M1, М2ХКМдо 0,2
0,2…2,536
2,5—3,5336
3,55…5,536
Твдо 0,2310
0,2…2.5310
2,5…3,53284
3,55…5,5284
Фольга рулонная для технических целей, ГОСТ 5638-75M1, М2ХКТв0,015…0,05290
Условные обозначения:
ГК — горячекатаные; ХК — холоднокатаные; ЛХК листы холоднокатаные; Л ГК — листы горячекатаные; ПХК — полосы холоднокатаные; М — мягкое; ПТ — полутвердое; Тв — твердое.
Табл. 5. Характеристики холоднокатаных лент при испытании по Эриксену (радиус пуансона 10 мм)
ЛентыМаркаСостояниеТолщина, ммГлубина лунки, мм, не менее
Общего назначения, ГОСТ 1173-2006M1, M1p, М1p, М2, М2р, М3, МЗрмягкое0,1…0,147
0,14…0,167
0,16…0,288
0,28…0,558,5
0,55…0,69
0,6…1,19,5
1,1…1,510
Радиаторные, ГОСТ 20707-80M1, М2, М3мягкое0,06…0,074,5…9.0
0,08…0,096,0…9,0
0,17,5
0,12…0,157,5
0,17…0,258
твердое0,11,5…3,5
0,12…0,151,5…3,5
Для электротехнических целей, ТУ 48-21-854-88M1мягкое0,1…0,157,5
0,2…0,258
0,3…0,58,2
0,6…19,5
Таблица 6. Трубы и трубки из меди. Размеры и механические свойства
Продукция, стандарт или технические условияМаркаИзгот.Сост. пост.Диаметр, мм / Толщина стенки, ммВременное сопротивление σb , МПаОтносительное удлинение δ10, %
не менее
Трубы общего назначения, ГОСТ 617-2006M1, M1p, М1ф, М2р, МЗр, М2, М3ХДМ3…360 / 0,8…1020035
ПТ2408
Тв280
Прдо 200 / 5…3019030
>200 / 5…3018030
Трубы квадратные и прямоугольные е круглым отверстием, ТУ48-21-497-81M1, M1p, М1ф, М2р, МЗр, М2, М3Т, ПМb; h; d20035
15…20,5;
13.5…14;
6…12,5
Прb; h; d19030
36…120;
16…36;
11…28
Трубы медные, ТУ 48-21-482-85M1, M1p, М1ф, М2р, МЗр, М2, М3Пр30 / 919030
Трубки медные тонкостенные, ТУ 48-21-161-85M1, М2ТМ0,8…2 / 0,15…0,521035
Тв4
Трубки медные тонкостенные. ГОСТ 11383-75M1, М2, М3ТМ1,5…28 / 0,15…0,721035
Тв3402
Трубы медные круглого сечения для воды и газа ГОСТ 52318-2005M1p, М1фТМ6…22 / 0,5…1.5220δ10≥40
ПТ6…54 / 0,5…2250δ10≥20
Тв6…267 / 0,5…3290δ10≥3
Условные обозначения:
ХД — холоднодеформированные; Пр — прессованные; Т гянутые;
П — прокатанные: М — мягкое; ПТ — полутвердое; Тв — твердое; h, h,d — ширина, высота, диаметр отверстия.
Таблица 7. Прутки, катанка и проволока из меди. Размеры и механические свойства
Продукция,стандарт или технические условияМаркаИзгот.Сост. пост.Размеры, ммВременное сопротивление σb , МПаОтносительное удлинение δ10, %
не менее
Прутки квадратные, ТУ 48-21-97-72М2Пр42…9420030
Прутки, IOCT 1535-2006M1, M1p, Мф, М2р, МЗр, М2, М3ТМ3…5020035
ПТ24010
Тв2705
Пр20…5019030
Профили из бескислородной меди, ТУ 48-21-637-79М0бТМb x h
11,4 x 8
20038
Проволока для заклепок, ТУ 48-21-456-2006M1, М2ТТвd 1…22408
d 2…10,724015
Проволока из бескислородной меди, ТУ 48-21-158-72М0бТМd 3,5;4,220030
Проволока крешерная, ГОСТ 4752-79М0бХДТвd 3…10320…
360
Проволока для электротехнических целей, ГОСТ 434-78М0, M1ТМd до 2,535
d
2,5…7
35
d 7…1035
d св. 1035
Твd до 2,5310
d 2,5…7290
d 7…10270
d св. 10270
Катанка медная, ТУ 16705.491-2001не ниже M1НЛd 8…2316035
Условные обозначения:
Пр — прессованные; Т — тянутые; ХД — холоднодеформированная; НЛ — непрерывное литье и прокатка;
М — мягкое; ПТ — полутвердое; Тв — твердое; b — ширина; h — высота; d — диаметр.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]