КУЗНЕЧНЫЙ МОЛОТ С ГИДРАВЛИЧЕСКИМ ПРИВОДОМ Российский патент 2014 года по МПК B21J7/28 


Классификация и виды

В зависимости от типа применяемого энергоносителя различают следующие виды описываемых агрегатов:

  1. Паровоздушный молот, который использует энергию перегретого пара.
  2. Пневматический молот, энергоносителем у которого выступает сжатый воздух.
  3. Гидравлический молот, деформирующий заготовку силой потока рабочей жидкой среды (воды или масла).
  4. Гидровинтовой молот, где, наряду с энергией жидкости применяется и механическая энергия.
  5. Механический молот, для которого реализован принцип непосредственного преобразования потенциальной энергии/работы в кинетическую.

Гидравлический молот Паровоздушный молот


Пневматический молот

Классификацию производят также и по технологическому назначению; это определяет особенности конструкции молотов. В частности, ковочный молот имеет отдельно стоящие стойки, а паровоздушный молот отличается исполнением стоек, соединённых с шаботом при помощи крепёжных, подпружиненных деталей.

Принцип компоновки всех молотов — в основном вертикальный. Немногочисленные варианты горизонтальных бесшаботных молотов — импакторов – особого распространения не получили. Причина – сложность удержания нагретой заготовки во время её обработки давлением. В то же время сотрясения грунта и фундамента при этом значительно уменьшаются, что делает работу на таком оборудовании более комфортной.

Инструкция по сборке кузнечного молота

К раме станины приваривают две вертикальные стойки, их высота зависит от нужной силы удара молота.

Затем к стойкам крепится ось для конструкции рычага, которую можно приварить или зафиксировать в проделанных отверстиях.

Лучше использовать второй вариант крепления, чтобы при необходимости произвести ремонт рычага, его можно было бы легко разобрать.

После того как молот собран, рекомендуется проконтролировать горизонтальность установки, так как нельзя допускать наличие даже минимальных перекосов.

Наковальню для кузнечного молота можно сделать также из полосовой стали.

Видео:

Вначале с помощью сварки изготавливается рама из уголка подходящего размера, она приваривается к передней части станины. Затем на нее укладывают и приваривают заготовки.

Сверху по периметру рамы укладывают и приваривают толстый металлический лист. При этом обязательно поверхность наковальни должна иметь строго горизонтальное положение.

Завершается статья полезным видео материалом на тему, как правильно обслуживать и проводить ремонт кузнечного оборудования.

Устройство механизма кузнечного молота

На первом этапе сборки механизма кузнечного молота изготавливают рычаг. На один его конец монтируют боек, другой оснащают противовесом.

При этом конструкция рычага может выполняться как в сборном, так и монолитном виде. Как правильно сделать рычаг, можно более детально рассмотреть в предложенном видео материале.

Исключить выгибание рычага в момент сильных ударов позволит применение полосовой стали, но никак не трубы. При этом сталь должна иметь толщину не менее чем 25 мм, ширину около 70 мм.

Разделив визуально стальную полосу на три части, в конце первой части с одного края трубы проделывается отверстие под отрезок трубы, который создаст условия вращения рычага.

Для этого в готовое отверстие вставляется и приваривается сегмент трубы, она будет выступать в качестве подшипника.

При 70-ти мм ширине стальной полосы отверстие должно иметь такой диаметр, чтобы до края полосы оставалось 8-10 см, что позволит исключить преждевременный ремонт установки из-за деформации рычага в этом месте.

Поэтому в качестве трубы для изготовления «подшипника» можно взять 50-ти мм изделие.

Перекладина для устройства рычага берется с таким диаметром, который позволит ему свободно вращаться на оси, но при этом не «болтаться».

ВАЖНО ЗНАТЬ: Обзор радиально-сверлильных станков

Видео:

Чтобы рычаг кузнечного молота в ходе рабочего процесса не сместился, что потребовало бы производить ремонт в самый неподходящий момент, его дополнительно фиксируют шпильками.

Крепежные элементы устанавливаются за счет радиальных отверстий.

С помощью сварки один край рычага оснащается молотом, второй – противовесом.

Ударник обязательно должен быть изготовлен из инструментальной высокопрочной стали, в противном случае толку от такого бойка будет мало.

Отдельные модели молотов

Конструкции современных ковочных станков не являются копиями перечисленных ранее видов и по принципам действия они сильно отличаются от классических схем. Часто теперь гидравлические молоты имеют элементы пневматики, а в пневматических встречаются гидравлические узлы. Чисто механические молоты в промышленном производстве понемножку уходят в прошлое. Производители конфигурируют свои изделия по соображениям экономии энергии, удобства в работе и, конечно, повышения производительности.

Разберёмся с отдельными моделями современных кузнечных станков, поставляемых на российский рынок как отечественными, так и зарубежными компаниями.

Модель МА-4127

Незаменимым в художественной ковке можно смело назвать молот МА-4127 пневматического действия, имеющий МПЧ (массу падающей части) 50 кг. Этот станок производится компанией ПромСтройМаш, специализирующейся на металлорежущих и кузнечных ковочных станках. Предназначением МА-4127 являются такие работы в кузнечном цехе, как горячая рубка стальных заготовок, гибка и протяжка, пробивка в них отверстий.

Молот имеет цельнолитую чугунную станину, изготовленную методом фасонного литья, на которой смонтированы все его основные узлы и механизмы. Такая компоновка станка успешно позволяет осуществлять им все требуемые технологические и энергетические функции. Управление молота комбинированного типа – ручное с помощью рукоятки и педальное для действий ногой. Это расширяет технологические возможности станка и является удобством в работе кузнеца.

Ход бабы в молоте составляет 300 мм, а диаметр компрессорного цилиндр равен 225 мм. Энергию для работы станок получает от электродвигателя мощностью 4 кВт, а оптимальным размером стороны стального квадрата для ковки является 50 мм.

Купить МА 4127 сейчас у производителя можно за 490 тыс. руб.

Модель МА-4129

От предыдущей модели молот МА-4129 отличается большим значением веса падающей части, равным 80 кг. Этот станок не рекомендован для использования им закрытых штампов, так как имеет высокую жёсткость ударного механизма, которая способна привести к выходу из строя бабы, букса.

Сжатый компрессором воздух приводит в движение бабу станка. Электродвигатель механического привода, имеющий короткозамкнутый ротор, служит источником энергии рабочего цилиндра станка. Конструктивно привод выполнен как кривошипно-шатунный механизм с клиноременной передачей. Если невозможен подвод к станку электроэнергии, его можно задействовать от трансмиссии трактора.

Ударник молота МА-4129 является пустым изнутри, в верхней его части которой находится поршневой венец. Снизу эта пустотелая деталь заканчивается сплошным штоком.

Молот имеет несколько режимов работы: холостого хода, удержания бабы на весу; ударов по заготовке в режиме автомата; единичных управляемых ударов; придавливания заготовки.

Цена кузнечного молота МА-4129 от производителя сейчас составляет 541 тыс. руб.

Модель BlackSmith

Пневматический кузнечный молот BlackSmith КМ1-16R используется в самых различных работах по изготовлению деталей. Он является чуть ли не идеальной конструкцией ковочного станка для небольшой мастерской кузнечного профиля.

Этот кузнечный мини-молот обладает частыми ударами и при своей малой массе имеет небольшую цену. Станок очень надёжен, прост в эксплуатации. Хорош станок и для первых шагов человека в ковочном ремесле, и для тех случаев, когда в работе кузнеца требуется высокая производительность.

Для BlackSmith КМ1-16R характерны следующие рабочие параметры:

  • МПЧ – 16 кг;
  • производительность станка — 258 уд/мин;
  • энергия ударов – 180 кгС;
  • размер хода падения бабы – 180 мм.

Наиболее подходящие размеры проковываемой детали – 20 мм для стороны квадрата или диаметра кругляка. Стоимость этого ковочного станка составляет 120 тыс. руб.

Основные сведения о конструкции молота

ИЗУЧЕНИЕ КОНСТРУКЦИИ И ПАСПОРТИЗАЦИЯ ПРИВОДНОГО

КОВОЧНОГО ПНЕВМАТИЧЕСКОГО МОЛОТА

Цель работы:

изучение конструкции и работы приводного ковочного пневматического молота, определение его основных паспортных данных, получение навыков в составлении паспорта пневматического молота.

Основные сведения о конструкции молота

Приводные пневматические молоты предназначены для выполнения различных кузнечных работ, осуществляемых ковкой: протяжки, осадки, прошивки отверстий (сквозных и глухих), рубки, гибки, кузнечной сварки и т.д. На пневматических молотах возможна штамповка в подкладных штампах. Штамповка в закрытых штампах недопустима, так как жесткость ударов может привести к поломке бабы.

Приводные пневматические молоты (рис. 1.1) работают с помощью воздуха, поступающего из окружающей атмосферы в компрессорный цилиндр 6 и подвергающегося сжатию и разряжению при возвратно-поступательном движении поршня компрессора 8. Поршень компрессора 8 приводится в движение от приводного электродвигателя 1 через клиноременную передачу 2, редуктор 3, кривошип 4 и шатун 5. Следует отметить, что в кинематической цепи электродвигателя-поршня компрессора редуктора может и не быть. В этом случае шатун 5 соединен с кривошипным валом, на который жестко посажен маховик. Редуктор необходим для понижения числа оборотов кривошипа.

На рис.1.1 введены следующие обозначения: 1 – приводной электродвигатель; 2 – клиноременная передача; 3 – цилиндрический редуктор; 4 – кривошипный вал; 5 – шатун; 6 – цилиндр компрессора; 7 – рабочий цилиндр; 8 – поршень компрессора; 9 – поршень рабочего цилиндра; 10 – механизм воздухораспределения; 11 – станина молота; 12 – баба; 13, 14 – верхний и нижний боек; 15 – шабот; 16 – виброизоляция шабота.

По принципу действия пневматические молоты отличаются от паровоздушных, в которых падающие части разгоняются под действием пара или сжатого воздуха, поступающих в рабочий цилиндр. У пневматических молотов, как видно из рис. 1.1, воздух осуществляет только нежесткую связь между компрессорным 8 и рабочим 9 поршнями, являясь упругой подушкой, передающей движение от поршня компрессора 8 к рабочему поршню 9. Число ударов молота в минуту равно числу оборотов кривошипа 4.

а – общий вид; б – схема расположения рукояток управления

воздухораспределительного механизма (1-3 – положения рукояток)

Рисунок 1.1 – Устройство приводных пневматических молотов

Верхний подвижный боёк 13 закреплен на бабе 12, а нижний неподвижный боек 14 – на шаботе 15.

Пневматические молота выпускаются с массой падающих частей (мпч) 50…1000 кг и с энергией удара 0,8…28 кДж. Скорость в момент удара может составлять 5…7,5 м/с. Кратность масс равна 12.

Движение поршня компрессора является движением с одной степенью свободы, определяемой углом порота кривошипа (рис. 1.2). Рабочий поршень занимает самое нижнее положение; при этом боек находится на поковке, а компрессорный поршень – в самом верхнем положении (рис. 1.2, а

). В этом положении верхняя и нижняя полости компрессорного цилиндра соединены с атмосферой, и начальное давление в них устанавливается равным атмосферному. Такое же давление устанавливается в верхней и нижней полостях рабочего цилиндра, поскольку эти полости сообщаются с помощью кранов с соответствующими полостями компрессорного цилиндра.

а – начальное положение; б – движение рабочего поршня вверх;

в – движение рабочего поршня вниз

Рисунок 1.2 – Схема движения поршней рабочего и компрессорного цилиндра

При движении поршня компрессорного цилиндра вниз от начального положения давление в нижних полостях обоих цилиндров увеличивается, а в верхних уменьшается. При возрастании давления в нижних полостях до величины, достаточной для преодоления силы тяжести подвижных частей, сопротивления трения и давления воздуха в поршневой полости рабочего цилиндра, рабочий поршень начнет движение вверх. При угле поворота кривошипа a2 = p, когда поршень компрессора займет нижнее положение, происходит соединение верхней полости компрессорного цилиндра с атмосферой (рис. 1.2, б

). В этот момент нижняя полость компрессорного цилиндра с атмосферой не соединяется.

При определенном угле поворота кривошипа верхний поршень, поднимаясь вверх, закроет верхний канал и разобщит верхние полости цилиндров (рис. 1.2, в

). В результате этого ход рабочего поршня начнет замедляться, и в какой-то момент рабочий поршень остановится в своем верхнем положении. При этом воздух в надпоршневой полости рабочего поршня будет сжатым. При опускании рабочего поршня давление в надпоршневой полости будет уменьшаться, и в момент, когда оно станет равным давлению в верхней полости компрессорного цилиндра, произойдет соединение обеих полостей через обратный клапан. Угол a4, при котором это происходит, называется
углом выхода рабочего поршня из буфера
.
При дальнейшем вращении кривошипа поршень компрессора приближается к крайнему верхнему положению, а рабочий поршень подходит к крайнему нижнему положению. Удар бойка по поковке обычно происходит при угле поворота кривошипа, который немного меньше 2p.
На рис. 1.3 показан общий вид изучаемого пневматического приводного молота модели МА4127 с мпч 50 кг.

1 – компрессорный цилиндр; 2 – рабочий цилиндр; 3 – рукоятка среднего крана; 4 – рукоятка верхнего и нижнего кранов; 5 – приводной электродвигатель; 6 – кожух клиноременной передачи; 7 – станина молота; 8 – ось кривошипного вала; 9 – рабочие бойки; 10 – педаль управления

Рисунок 1.3 – Общий вид изучаемого приводного пневматического молота

модели МА4127 с мпч 50 кг


Устройство изучаемого молота аналогично конструкции, приведенной на рис. 1.1, с той лишь разницей, что в его конструкции нет редуктора (привод шатуна осуществляется через клиноременную передачу, маховик и кривошипный вал) и шабот установлен непосредственно в станине. Установка шабота в станине молота возможна вследствие малости мпч, а, следовательно, и энергии удара.

Пневматические молоты могут осуществлять следующие режимы работы: холостой ход, удержание бабы на весу, автоматические последовательные удары и прижим поковки. В некоторых конструкциях молотов имеется режим одиночных ударов. Для осуществления вышеуказанных режимов на пневматических молотах применяют механизм воздухораспределения, состоящий из трех горизонтальных кранов (см. рис. 1.1, б

): верхнего, среднего и нижнего. Верхний и нижний краны служат для управления работой молота, а средний – для перевода компрессора на холостой ход. Между верхним и нижним кранами в стакане молота имеется камера с обратным клапаном.

На рис. 1.4 изображена развернутая схема механизма воздухораспределения пневматических молотов. Верхний кран имеет два сечения, а нижний – три.

Рисунок 1.4 – Развернутая схема механизма воздухораспределения

пневматических молотов

Холостой ход
Чтобы не перегревать компрессор при длительных паузах, его переводят на холостой режим работы. Это осуществляется поворотом среднего крана в крайнее левое положение (кран открыт) (см. рис. 1.3, поз. 3), при этом рукоятки верхнего и нижнего кранов находятся в среднем положении (педаль также находится в среднем положении).

В результате этого верхняя полость рабочего цилиндра и верхняя полость компрессорного цилиндра сообщаются через верхний кран с атмосферой через открытый канал 3 (см. рис. 1.4). Нижняя полость компрессорного цилиндра также (через средний кран) сообщается с атмосферой через открытый канал 4 (при этом также открыты каналы 10 и 11).

Таким образом, компрессор работает, но давление в полостях рабочего и компрессорного цилиндров равно атмосферному, и баба под собственном весом покоится на нижнем бойке. Молот работает вхолостую.

ИЗУЧЕНИЕ КОНСТРУКЦИИ И ПАСПОРТИЗАЦИЯ ПРИВОДНОГО

КОВОЧНОГО ПНЕВМАТИЧЕСКОГО МОЛОТА

Цель работы:

изучение конструкции и работы приводного ковочного пневматического молота, определение его основных паспортных данных, получение навыков в составлении паспорта пневматического молота.

Основные сведения о конструкции молота

Приводные пневматические молоты предназначены для выполнения различных кузнечных работ, осуществляемых ковкой: протяжки, осадки, прошивки отверстий (сквозных и глухих), рубки, гибки, кузнечной сварки и т.д. На пневматических молотах возможна штамповка в подкладных штампах. Штамповка в закрытых штампах недопустима, так как жесткость ударов может привести к поломке бабы.

Приводные пневматические молоты (рис. 1.1) работают с помощью воздуха, поступающего из окружающей атмосферы в компрессорный цилиндр 6 и подвергающегося сжатию и разряжению при возвратно-поступательном движении поршня компрессора 8. Поршень компрессора 8 приводится в движение от приводного электродвигателя 1 через клиноременную передачу 2, редуктор 3, кривошип 4 и шатун 5. Следует отметить, что в кинематической цепи электродвигателя-поршня компрессора редуктора может и не быть. В этом случае шатун 5 соединен с кривошипным валом, на который жестко посажен маховик. Редуктор необходим для понижения числа оборотов кривошипа.

На рис.1.1 введены следующие обозначения: 1 – приводной электродвигатель; 2 – клиноременная передача; 3 – цилиндрический редуктор; 4 – кривошипный вал; 5 – шатун; 6 – цилиндр компрессора; 7 – рабочий цилиндр; 8 – поршень компрессора; 9 – поршень рабочего цилиндра; 10 – механизм воздухораспределения; 11 – станина молота; 12 – баба; 13, 14 – верхний и нижний боек; 15 – шабот; 16 – виброизоляция шабота.

По принципу действия пневматические молоты отличаются от паровоздушных, в которых падающие части разгоняются под действием пара или сжатого воздуха, поступающих в рабочий цилиндр. У пневматических молотов, как видно из рис. 1.1, воздух осуществляет только нежесткую связь между компрессорным 8 и рабочим 9 поршнями, являясь упругой подушкой, передающей движение от поршня компрессора 8 к рабочему поршню 9. Число ударов молота в минуту равно числу оборотов кривошипа 4.

а – общий вид; б – схема расположения рукояток управления

воздухораспределительного механизма (1-3 – положения рукояток)

Рисунок 1.1 – Устройство приводных пневматических молотов

Верхний подвижный боёк 13 закреплен на бабе 12, а нижний неподвижный боек 14 – на шаботе 15.

Пневматические молота выпускаются с массой падающих частей (мпч) 50…1000 кг и с энергией удара 0,8…28 кДж. Скорость в момент удара может составлять 5…7,5 м/с. Кратность масс равна 12.

Движение поршня компрессора является движением с одной степенью свободы, определяемой углом порота кривошипа (рис. 1.2). Рабочий поршень занимает самое нижнее положение; при этом боек находится на поковке, а компрессорный поршень – в самом верхнем положении (рис. 1.2, а

). В этом положении верхняя и нижняя полости компрессорного цилиндра соединены с атмосферой, и начальное давление в них устанавливается равным атмосферному. Такое же давление устанавливается в верхней и нижней полостях рабочего цилиндра, поскольку эти полости сообщаются с помощью кранов с соответствующими полостями компрессорного цилиндра.

а – начальное положение; б – движение рабочего поршня вверх;

в – движение рабочего поршня вниз

Рисунок 1.2 – Схема движения поршней рабочего и компрессорного цилиндра

При движении поршня компрессорного цилиндра вниз от начального положения давление в нижних полостях обоих цилиндров увеличивается, а в верхних уменьшается. При возрастании давления в нижних полостях до величины, достаточной для преодоления силы тяжести подвижных частей, сопротивления трения и давления воздуха в поршневой полости рабочего цилиндра, рабочий поршень начнет движение вверх. При угле поворота кривошипа a2 = p, когда поршень компрессора займет нижнее положение, происходит соединение верхней полости компрессорного цилиндра с атмосферой (рис. 1.2, б

). В этот момент нижняя полость компрессорного цилиндра с атмосферой не соединяется.

При определенном угле поворота кривошипа верхний поршень, поднимаясь вверх, закроет верхний канал и разобщит верхние полости цилиндров (рис. 1.2, в

). В результате этого ход рабочего поршня начнет замедляться, и в какой-то момент рабочий поршень остановится в своем верхнем положении. При этом воздух в надпоршневой полости рабочего поршня будет сжатым. При опускании рабочего поршня давление в надпоршневой полости будет уменьшаться, и в момент, когда оно станет равным давлению в верхней полости компрессорного цилиндра, произойдет соединение обеих полостей через обратный клапан. Угол a4, при котором это происходит, называется
углом выхода рабочего поршня из буфера
.
При дальнейшем вращении кривошипа поршень компрессора приближается к крайнему верхнему положению, а рабочий поршень подходит к крайнему нижнему положению. Удар бойка по поковке обычно происходит при угле поворота кривошипа, который немного меньше 2p.
На рис. 1.3 показан общий вид изучаемого пневматического приводного молота модели МА4127 с мпч 50 кг.

1 – компрессорный цилиндр; 2 – рабочий цилиндр; 3 – рукоятка среднего крана; 4 – рукоятка верхнего и нижнего кранов; 5 – приводной электродвигатель; 6 – кожух клиноременной передачи; 7 – станина молота; 8 – ось кривошипного вала; 9 – рабочие бойки; 10 – педаль управления

Рисунок 1.3 – Общий вид изучаемого приводного пневматического молота

модели МА4127 с мпч 50 кг

Устройство изучаемого молота аналогично конструкции, приведенной на рис. 1.1, с той лишь разницей, что в его конструкции нет редуктора (привод шатуна осуществляется через клиноременную передачу, маховик и кривошипный вал) и шабот установлен непосредственно в станине. Установка шабота в станине молота возможна вследствие малости мпч, а, следовательно, и энергии удара.

Пневматические молоты могут осуществлять следующие режимы работы: холостой ход, удержание бабы на весу, автоматические последовательные удары и прижим поковки. В некоторых конструкциях молотов имеется режим одиночных ударов. Для осуществления вышеуказанных режимов на пневматических молотах применяют механизм воздухораспределения, состоящий из трех горизонтальных кранов (см. рис. 1.1, б

): верхнего, среднего и нижнего. Верхний и нижний краны служат для управления работой молота, а средний – для перевода компрессора на холостой ход. Между верхним и нижним кранами в стакане молота имеется камера с обратным клапаном.

На рис. 1.4 изображена развернутая схема механизма воздухораспределения пневматических молотов. Верхний кран имеет два сечения, а нижний – три.

Рисунок 1.4 – Развернутая схема механизма воздухораспределения

пневматических молотов

Холостой ход

Чтобы не перегревать компрессор при длительных паузах, его переводят на холостой режим работы. Это осуществляется поворотом среднего крана в крайнее левое положение (кран открыт) (см. рис. 1.3, поз. 3), при этом рукоятки верхнего и нижнего кранов находятся в среднем положении (педаль также находится в среднем положении).

В результате этого верхняя полость рабочего цилиндра и верхняя полость компрессорного цилиндра сообщаются через верхний кран с атмосферой через открытый канал 3 (см. рис. 1.4). Нижняя полость компрессорного цилиндра также (через средний кран) сообщается с атмосферой через открытый канал 4 (при этом также открыты каналы 10 и 11).

Таким образом, компрессор работает, но давление в полостях рабочего и компрессорного цилиндров равно атмосферному, и баба под собственном весом покоится на нижнем бойке. Молот работает вхолостую.

Конструкция и принцип действия

Функционирование ковочного молота базируется на динамических ударах рабочего органа — штока, соединенного с бабой (ударной частью машины) и устройствами, контролирующими силу воздействия. Другими обязательными конструктивными элементами являются:

  • поршень, соединенный с бабой;
  • основание (зафиксированное на твердой поверхности);
  • станина (направляющие для подвижных узлов фиксируются на ней);
  • приводное оборудование;
  • щитовое ограждение (для безопасности оператора);
  • электрическое оборудование;
  • компрессорный цилиндр (у пневматических молотов).

Ранние машины имели ножной или ручной привод. Современный кузнечный молот оснащен удобной системой управления, минимизирующей усилие работника кузницы.


Рис. 1. Устройство пневматического молота.

(1 — рабочий цилиндр, 2 — компрессорный цилиндр, 3 — поршень, 4 — кривошипный механизм, 5 — баба, 6 и 7 — верхний и нижний бойки, 8 — подушка, 9 — воздухораспределительный механизм, 10 — деформируемая заготовка)

Вкратце действие устройства происходит так:

  • заготовка помещается в нижнюю часть молота (обычно это боек);
  • настраивают устройство на определенную частоту удара, приводят в движение;
  • после активации молота, ведомая верхняя часть бьет по заготовке;
  • динамическое воздействие продолжается до тех пор, пока заготовка не приобретет нужную форму.

Технические характеристики и конструкция

Технические характеристикимолота МА4132
Энергия удара, кДж (кгс/м)3,1 (315)
Номинальная масса падающих частей, кг160
Частота ударов в минуту190
Расстояние от оси бабы до станины (вылет), мм340
Высота рабочей зоны в свету, мм360
Размеры зеркала бойков (Длина/ Ширина), мм200/ 85
Высота молота над уровнем пола, мм2160
Расстояние от зеркала нижнего бойка до уровня пола, мм800
Ход поршня компрессора/ Ход бабы (наибольший), мм330/ 460
Оптимальное проковываемое сечение заготовки, мм
круглой – диаметром/ квадратной – со стороной80/ 90
Скорость падающих частей в момент удара (теоретическая), м/сек6,5
Маслонасосциклического действия
Габаритные размеры молота, мм (ДхШхВ)/ Масса молота с шаботом, кг1900х900х2160/ 5300

Молот МА4132 (МПЧ 160 кг) применяется в разных видах кузнечных работ.

Основные достоинства модели — высокая мощность, отличная управляемость, возможность регулировки силы удара, максимальная отработка теплоты поковки из-за высокого числа ударов, необременительный уход и содержание оборудования.

Пневматические молоты данной модели состоят из электрооборудования, станины, ограждения, маслопровода и привода. К падающим частям относятся баба, прикрепленный к ней верхний подвижный боек, шток и поршень. Нижний неподвижный боек присоединен к плите, зафиксированной на шаботе. На нем устанавливается обрабатываемая заготовка.

Пневматический кузнечный молот имеет рабочий и компрессорный цилиндры. Поршень рабочего цилиндра соединен с бабой (или она является его частью), поршень компрессорного — приводится в движение электродвигателем через клиноременную передачу, редуктор, кривошипно-шатунный механизм и шатун.

Редуктор предназначен для уменьшения числа оборотов кривошипа. Когда верхние и нижние полости рабочего и компрессорного цилиндров попарно соединяются, баба совершает по вертикали непрерывное возвратно-поступательное движение, которое ей сообщает вращение кривошипного вала. Удары по заготовке наносятся через равные промежутки времени.

Основные данные электрооборудования

Род тока, Гц: Переменный, трехфазный/ 50 Напряжение (цепи управления/рабочее), В: 220/380 Электродвигатель: 4АМ160М4У3 (1) Мощность, кВт: 15,0 Частота вращения, об/мин: 1450 Диаметр шкива, мм: 160

Основные данные привода

Приводной шкив (расчетный диаметр), мм: 400 Ремни (ГОСТ 1284.3-96): С-2360 Количество на молот, шт: 4

Привод маслонасоса

Электродвигатель асинхронный с к.з. ротором (комплектно с маслонасосом) Мощность, кВт: 0,08

Базовая комплектация:

  • Молот ковочный в сборе с шаботом;
  • Электрическая часть;
  • ЗИП;
  • Техническая документация.

Запасные части, поставляемые по особому заказу за отдельную плату:

  • Планка. М41 32А-11-114, 2 шт.
  • Кольцо разрезное. М41 32-11-106.
  • Поршневые кольца. М41 32А-11-424, 6 шт.
  • Сухари. М41 32-11-116, 2 шт.
  • Сегменты. М41 32-11-115, 2 шт.
  • Верхний боек. М41 32-11-407.
  • Нижний боек. М41 32-12-401А.
  • Палец. М41 32-11-412.
  • Клиновые ремни ГОСТ 1284-1-80, 5 шт.

Запасные части к ковочным молотам смотрите в разделе Техоснастка и запчасти — Запчасти для молота. Чтобы подобрать оборудование или ЗИП по нужным параметрам, обращайтесь к менеджерам: 8 (499) 130-73-27,

.

Механический молот своими руками

Изготовить самодельный молот для ковки можно в несколько этапов:

  • Подготовка фундамента под установку.
  • Создание рамы станка.
  • Сборка механизма.
  • Монтаж устройства.

Но прежде, чем приступить к изготовлению всей конструкции, нужно определиться с размерами такого оборудования, что в дальнейшем определит его вес и возможности. Примеры устройств показаны на схеме.

Проще всего сделать кузнечный механический молот, показанный в варианте «А» с горизонтальным расположением, он будет более устойчивым.

Фундамент

Сделав чертеж будущего устройства, приступают к подготовке фундамента. Он нужен для нормальной работы во избежание опрокидывания молота и гашения силы удара.

В месте установки копается яма нужных размеров. На дно засыпают песок и щебень, который поливают и утрамбовывают. Сверху монтируют армирующий каркас из арматуры 12-14 мм, обязательно с перевязкой с шагом в 250-300 мм.

Бетон готовят в пропорции 1:2:3 (цемент марка м400, щебень фракция 10-20, и песок).

Заливку стоит производить за один раз, постоянно стараясь уплотнить массу во избежание пустот внутри.

По завершению в незастывший бетон можно установить анкерные болты, на которые потом будет дополнительно крепится установка.

Материал рамы выбирают в зависимости от параметров установки и габаритов обрабатываемых деталей. Подойдет либо профильная труба, либо швеллер. Также можно использовать другой удобный металлопрокат.

Сборка рамы осуществляется сварочным способом. Обязательно устанавливаются дополнительные распорки и поперечные балки.

Механизм

Основная работающая часть — рычаг с бойком и противовесом может быть монолитной или же сборной. Металл должен быть сплошным (не труба), иначе под весом постепенно штанга деформируется. Такой рычаг можно «набрать» с полос, сваривая их между собой.

Боек нужно изготовить из стали инструментальных марок и, желательно, его закалить для большей прочности. Его к рычагу нужно приварить.

Для противовеса подойдет любой тяжелый металл или другой материал.

Вал, на котором будет вращаться молот, также лучше изготовить из полнотелого отрезка стали. Сам рычаг с молотом фиксируют на оси, используя поперечные шпильки. Вал в раме должен свободно вращаться, поэтому концы лучше всего оснастить соответствующими подшипниками.

Педаль привода и передачу можно сварить с обычной профильной трубы по требуемому размеру. Причем сам рычаг управления должен свободно двигаться. Для этого также подойдут подшипники или просто обрезки трубы, в которые монтируют вал с педалью.

Этапы сборки молота

Изначально нужно собрать и установить на фундамент раму устройства. Нижние салазки крепят на анкерные болты с гайками. К ним сваркой приваривают остальные направляющие и перемычки.

В стойки вставляется вал, на который фиксируется рычаг с молотом.

Так же осуществляется и сборка привода с педалью или рычагом.

Саму наковальню можно изготовит с обрезка рельса, двутавра или швеллера. Однако, желательно, чтобы лицевая часть была закаленной.

После окончательной сборки и испытаний конструкцию нужно покрасить.

А что Вы можете добавить к этому материалу из личного опыта изготовления таких устройств для ковки металла? Какие конструкции использовали у себя, поделитесь идеями в блоке комментариев к этой статье.

В кузнечном деле мастеру не обойтись без ряда специальных инструментов, в том числе и без кузнечного молота. Такой агрегат способен деформировать металлозаготовку, придавая ей определенную форму.

Особенности эксплуатации подобного оборудования на практике определяются его видом, возможностями и особенностями строения.

Монтаж и установка молота

Точность работы молота во многом зависят от правильной его установки (рис. Установочный чертеж

). Глубина заложения фундамента зависит от качества грунта, уровня грунтовых вод и других местных условий.

Детали фундамента заводом не поставляются.

Прокладка под шабот изготавливается из строганных брусьев высушенного дерева твердых пород (бук, дуб). Установка шабота на прокладку производится по уровню. Отклонение от горизонтальности опорной плоскости паза в подушке не должен превышать 0,2 мм на длине 1000 мм.

После установки шабота на слой брусьев и выверки бойков, по контуру основания шабота укладываются брусья по 2 шт. с каждой стороны. Для виброизоляции, между шаботом и стенками ямы засыпаются инертные материалы (шлак и т.д.).

Молот выставляется по шаботу так, чтобы отклонение бабы от вертикального положения было не более 2 мм на длине 1000 мм и не плотность прилегания рабочих плоскостей бойков при соприкосновении не превышало 0,2 мм на 300 мм длины и ширины бойка.

Шабот необходимо установить так, чтобы кольцевая риска на бабе была выше нижнего торца буксы на 5-10 мм. После приработки в результате осадки шабота кольцевая риска должна совпасть с нижней кромкой буксы, что соответствует нормальному взаимному расположению шабота и бабы. В дальнейшем надо строго следить за правильным положением кольцевой риски.

После заливки колодцев фундаментных болтов и затвердения бетонного раствора, забить встречные дубовые клинья между станиной и шаботом (уклон клиньев равен 2°), следует еще раз проверить установку бойков и затем окончательно затянуть гайки анкерных болтов.

Основные детали фундамента (Наименование/ Материал, ГОСТ/ Количество):

Брусья 130х130х780 Дуб (бук), ГОСТ 8486-66. 6 шт Брусья 40х40х740. Дуб (бук), ГОСТ 8486-66. 4 шт Клинья 30х80х280. Дуб, ГОСТ 8486-66. 52-62 шт Трубы d (ø) 125х1300. ГОСТ3262-75. 6 шт Болты М30х1380. Сталь 35, ГОСТ 1050-74. 6 шт Болты М20х450. Сталь 35, ГОСТ 1050-74. 4 шт Гайки М30-6Н.56.05. ГОСТ 5927-70. 12 шт Шайбы 10х80х100. Сталь Ст.3, ГОСТ 380-71. 6 шт Шайбы 90х10. Сталь Ст.3, ГОСТ 380-71. 6 шт Гайки М20-6Н.56.05. Гост 5927-70. 4 шт Шайбы 20. Гост 11371-68. 4 шт

Установочный чертеж

Принцип работы и разновидности

В наиболее удачных конструкциях используется два вида энергии — потенциальная и кинетическая. Потенциальная

определяется массой бойка m, ускорением свободного падения g и высотой h, с которой боёк перемещается вниз. Реализация только этой составляющей привело бы к непомерному увеличению высоты подъёма.

В свою очередь, реализуемая кинетическая энергия

зависит не столько от массы, сколько от скорости v соударения с деформируемым металлом. Таким образом, исходными параметрами должны быть:

Кроме того, с точки зрения производительности ковки большое значение имеют также число ударов в единицу времени, и закрытая высота в плане (параметр важен для выяснения предельных размеров заготовки, которую можно разместить в ковочном пространстве).

В качестве энергоносителей принимают сжатый воздух, пар, а также разнообразные механические устройства. Не всё из вышеперечисленного годится для самодельной разработки. Однозначно не подходит, например, пар, поскольку для этого придётся специально строить котельную станцию. Ряд механических систем — ремень, цепь, доска — также неприемлемы из-за высокой сложности, а также необходимости использования дефицитных и дорогих компонентов. В частности, для приводной доски потребуется высококачественная древесина бука, кедра или ясеня (да и эти породы не выдержат более 40…50 часов эксплуатации). Ещё большей конструктивной сложностью обладают кузнечные молоты с ремнём или цепью.

Они и будут рассмотрены далее.

Конструкции с пневмоприводом

Рисунок-1 Пневматическое исполнение.

Машины могут быть простого и двойного действия. Во втором случае инструмент дополнительно разгоняется за счет повышенного давления, которое создаётся компрессором, при помощи специального распределительного устройства — золотника. Золотник управляет агрегатом, обеспечивая подачу энергоносителя в полость над бойком.

Для самодельного изготовления более подходят варианты с одним цилиндром, где движение происходит в одной полости. Оборудование получается достаточно простым с конструктивной точки зрения, и при наличии мастерской вполне может быть изготовлено своими руками.

Цилиндр при этом может быть открыт либо сверху, либо снизу. (по месту расположения компрессорного поршня). Действуют оборудование следующим образом.

При цилиндре, открытом сверху, движение от электродвигателя передается кривошипному валу, который жёстко связан с поршнем компрессора. Поршень, который при помощи штока соединён с инструментом, в это время находится внизу, на наковальне. При перемещении компрессорного поршня вверх, под ним создаётся разрежение, которое захватывает шток, и вынуждает его увлекаться по направляющим вверх.

При прохождении кривошипного вала через своё верхнее положение компрессорный поршень начинает двигаться вниз, и сжимает воздух, который находится в пространстве между поршнями. Энергия и ход определяются размерами этого пространства, массой подвижных частей и давлением, которое создаёт воздухонагнетающая установка.

Схема с цилиндром

открытым сверху, несколько сложнее. Она включает в себя:

  1. Рабочий поршень.
  2. Компрессорный поршень.
  3. Шток.
  4. Боёк.
  5. Управляющий рычаг.
  6. Шатун.
  7. Кривошип.
Как работает

При цилиндре, открытом сверху, компрессорный поршень может свободно скользить по штоку, отрабатывая ту траекторию, которая задаётся ему рычагом чрез кривошипно-шатунный механизм. Таким образом, ход будет зависеть не только от разрежения в полости, но и от веса подвижных частей. У такой техники имеется существенный недостаток — повышенный износ рычагов, которые работают в условиях постоянных вибраций, при резко изменяющихся нагрузках.

Система управления одноцилиндровыми конструкциями такова. В системе управления имеются две рукоятки. Одна предназначена для реверсирования привода кривошипно-шатунного механизма (впрочем, здесь можно установить управляющий датчик хода). Перемещая рукоятку подачи сжатого воздуха можно управлять интенсивностью удара, поскольку при определённом положении рукоятки объём рабочего пространства — а, следовательно, и мощность удара — разные.

Конструкции с механическим приводом

Из всех разновидностей наиболее просто изготовить для кузни молот с рычажным приводом. В механических установках инструмент может совершать перемещения, как по дуге окружности, так и возвратно-поступательные.

В наиболее простом своём варианте (без направляющих, наличие которых для ковки не всегда обязательно) агрегат будет включать в себя:

  1. Станину.
    Рисунок 2 — Рычажное исполнение
  2. Молотовище (изготавливается из прочных пород древесины).
  3. Приводной электродвигатель.
  4. Шкив.
  5. Шатун.
  6. Рычаг.
  7. Приводную ось.
  8. Направляющие.
  9. Буферные устройства.
  10. Отбойник.
  11. Нажимной ролик.
  12. Управляющую педаль.

Как работает

Функционирует схема следующим образом. Молотовище имеет возможность поворачиваться вокруг оси. Там же смонтирована и рычажная система, которая управляет перемещениями молотовища.

Эта система, в свою очередь, при помощи шарниров связана с шатуном и — через него — с кривошипно-шатунным механизмом, который преобразует вращательное движение электродвигателя в возвратно-поступательное перемещение шатуна.

На противоположном конце системы устанавливаются резиновые буферы, которые, с одной стороны, смягчают удар молотовища по поковке, а. с другой стороны, способствуют появлению вибраций, увеличивающих запас кинетической энергии. Таким образом, КПД при постоянной работе несколько выше, чем при одиночных ударах.

На станине неподвижно закрепляется резиновый отбойный буфер, который необходим для гашения постоянно возрастающих колебаний, и удерживания их амплитуды в приемлемом диапазоне значений.

При нажатии на педаль натяжной ролик оттягивает приводной ремень шкива, после чего при подъёме шатуна вверх молотовище будет отталкиваться от буферных устройств, и сжимать отбойный буфер. Тот накапливает кинетическую энергию, и отдаёт её молотовищу. При опускании шатуна молотовище идёт вниз, и бьёт по заготовке. Сила удара и скорость движения молотовища зависят от накопленной отбойником энергетических параметров. Ход молотовища можно изменять, смещая в необходимом направлении ось, для чего предназначаются направляющие.

Изменять число ходов можно несколькими способами

  • Регулировкой усилия прижима нажимного ролика к шкиву электродвигателя;
  • Изменением передаточного числа шкива электродвигателя;
  • Применением вариатора;
  • Установкой на привод двигателя постоянного тока.

Конструктивной разновидностью рычажных исполнений считаются рессорные молоты. В отличие от вышерассмотренной конструкции здесь роль устройства, накапливающего вибрации, выполняет обычная автомобильная рессора.

Эксплуатационным преимуществом рассмотренных механизмов является малая величина хода молотовища, благодаря чему время контакта инструмента с заготовкой невелико, и её охлаждение во время ковки менее интенсивно.

Маркировка и типоразмеры ковочных молотов

Основным технологическим параметром для выбора типоразмера ковочного молота является его масса падающих частей (мпч). В соответствии с ведомственной нормалью КН-01-1 обозначение ковочных молотов является комбинированным, цифрово-буквенным, и имеет вид МАХХХХ. Буква «М» означает «молот». Первые две цифры могут быть следующими:

  • 13 – для ковочных паровоздушных молотов двойного действия арочного типа;
  • 15 – для ковочных паровоздушных молотов двойного действия мостового типа;
  • 21 – для штамповочных паровоздушных молотов двойного действия;
  • 41 – для ковочных пневматических молотов.

Указанное оборудование производится в соответствии с требованиями ГОСТ 9752 (ковочные молоты), ГОСТ 7024 (паровоздушные штамповочные молоты) и ГОСТ 712 (пневматические молоты). Стандартным рядом для параметра мпч считается номинальный размерный ряд чисел, поэтому две последних цифры обозначения в марке молота указывают именно на мощность оборудования:

Две последних цифры обозначения272932343640434547495052
Мпч, кг5080160250400100020003150500080001000016000
Энергия удара. кДж0,91,553,36,4511305080125240310400

Возможны также дополнительные буквенные обозначения, которые свидетельствуют о модернизации базовой модели ковочного молота.

Ковочные молоты остальных видов используются редко, и изготавливаются по специальным заказам.

Конструкция и принцип действия

Принцип работы кузнечного молота прост. Молоток бьет по поковке с помощью штока, соединенного с ударником.

Стандартное устройство кузнечного молота включает такие детали, как:

  • силовой цилиндр;
  • шток;
  • боковые стойки;
  • шабот;
  • ударник «баба»;
  • система управления.

Силовой цилиндр направляет давление в нижнюю часть со штоком. На нем закреплен ударник, который совершает возвратно-поступательные движения. Баба деформирует заготовку. Стойки ковочного молота компенсируют перемещение бойка во время удара.

В старых машинах сила ударов регулировалась ножным или ручным приводом. Современные устройства работают на энергоносителях разных видов.

Для чего предназначен кузнечный молот?

Если такой молот хочет сделать не кузнечных дел мастер в каком-нибудь поколении, то тогда, возможно, это делается с целью создания красивых кованых элементов декора или мебели, изготовленной методом ковки (например, стулья и столы).

В большинстве случаев кузнечный молот – устройство, которое применяют на заводах и в мастерских, работающих с художественной штамповкой металла, изготавливающих и ремонтирующих инструменты. Его применение зависит от модели.

Для использования в домашних условиях данное устройство часто делается самостоятельно, и за счет своего ударного механизма применяется не только для изготовления кованых элементов, но и для работы с металлическими листами (для их деформации).

Уплотнение штока бабы и поршня компрессора молота МА4129

Уплотнение штока бабы и поршня компрессора молота МА4129

  1. букса бабы
  2. букса компрессора
  3. сухари и сегменты
  4. планка направляющая
  5. пружина
  6. кольцо уплотнительное
  7. экспандер

«а» — зазор

Баба фиксируется от вращения направляющими планками 4, вмонтированными в её буксу (рис.З). Для уплотнения штока бабы в буксе I сделана кольцевая выточка, в которой монтируются сегменты и сухари 3, стягиваемые пружиной 5: По мере износа штока бабы, а также сухарей и сегментов зазор «а» уменьшается, но может быть восстановлен запиловкой торцов сегментов. Для уплотнения штока поршня компрессора в буксе компрессора сделана кольцевая выточка, в которой монтируется уплотнительное кольцо 6, из материала ЛАМ1, стягиваемое экспандером 7.

Изготавливаем механический молот

Наиболее доступный по конструкции – механический молот рессорного типа: он компактен, и может быть достаточно производительным: эл. привод может обеспечить до 200…300 ходов в минуту.

Самодельный кузнечный молот рессорного типа с электрическим приводом состоит из:

  1. Эл. двигателя, управляющим вращением кривошипного вала.
  2. Исполнительного механизма для получения колебаний.
  3. Рессоры (используют автомобильную, не имеющую трещин и расслоений металла).
  4. Бойка с системой направляющих элементов.
  5. Станины Т-образного типа.
  6. Шабота или нижней плиты, где производится собственно ковка.

Чертеж общего вида самодельного кузнечного молота

Ручной механический молот с доской/ремнём включает в себя:

  1. Две замкнутые сверху стойки с направляющими пазами.
  2. Бойка с посадочным местом под передающий элемент.
  3. Шабота.
  4. Механизма подъёма с фиксатором (можно использовать обычную трещотку от блокировочных приспособлений грузоподъёмных лебёдок).
  5. Ремня или доски, которые соединяется сверху с бойком (в качестве материала доски принимают обычно дуб или лиственницу).

Чертежи оборудования обычно указываются в привязке с его фактической производительностью и мощностью, поэтому подбор оптимальной массы лучше выполнять после изготовления всех остальных узлов.

Последовательность сборки механического молота заключается в следующем. К выходному концу вала эл. двигателя присоединяют (можно муфтой) конец вала кривошипно-шатунного механизма. Далее посредством рычага к нему крепят рессору, которая должна иметь колебание в опорах. К рессоре шарнирно прикрепляется боёк, после чего производится регулировка направляющих (посадка в отверстии должна предусматривать зазор не менее 1,0…1,5 мм).

На завершающем этапе проверяют действие кривошипного узла и, при необходимости, уменьшают свободных колебаний рессоры (за счет ужесточения её крепления в опорах).

Сделать самодельный кузнечный молот не так сложно, если тщательно проработать чертежи применительно к конкретным условиям использования ковочного оборудования.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Основа всего кузнечного дела — это изменение формы разогретого металла ударами молота. Однако, такая работа очень трудоемка и, чтобы ее облегчить, еще со средних веков стали внедрять механические приспособления для ковки. Сегодня в кузницах распространены более практичные пневматические устройства.

Как сделать кузнечный молот своими руками и что для этого нужно? Об этом — далее в материале статьи.

Электрический молот для кузнечных работ

Список материалов:

– автомобильная пружина подвески; – рулевые тяги; – колесо с диском и шиной R14; – две колесные ступицы ВАЗ; – швеллер, уголок, листовое железо, профильные трубы; – двигатель мощностью 1.5 кВт (1500 об./мин); – болты, гайки, шайбы; – кусок рельсы.

Процесс изготовления самоделки:

Шаг первый. Основная стойка

Изготовление самоделки начнем с основной стойки, она представляет собой конструкцию в виде буквы «Г». Сделано все путем сваривания швеллера. Само собой, проварено все должно быть очень надежно, так как на эту часть приходятся немалые нагрузки.

На этой стойке находится ось, на которую устанавливается автомобильное колесо. В качестве оси автор по логике вещей использует колесную ступицу от ВАЗа. Делаем под ступицу крепеж из листового железа и привариваем на свое место. Надежно крепим ступицу болтами с гайками, и после этого можно установить автомобильное колесо.

Шаг второй. Рама для двигателя

Далее делаем раму для двигателя, эта конструкция собирается из уголка. Рама крепится к основной стойке шарнирно, в итоге двигатель может отдаляться или приближаться к колесу. Благодаря такой конструкции мы получаем возможность управления сцеплением ведущего колеса с ведомым (автомобильным колесом). Это очень удобно, не нужно постоянно включать и выключать двигатель, причем под нагрузкой. Двигатель работает постоянно, а мы лишь нажимаем на педаль, управляя сцеплением.

В качестве шарнира используем трубку и стальной стержень, люфты должны быть минимальными. Что касается двигателя, то с его вала снимаем шкив, сюда нужно установить ведущее колесо. Заказать такое можно у токаря, для простоты изготовления деталь можно выточить из алюминия.

Виды молотов

Продольный разрез молота МА4132.

По типу вещества, применяемого в компрессорном цилиндре, различают следующие ковочные молоты:

  • паровоздушные агрегаты работают за счет пара или атмосферного воздуха;
  • гидравлические и гидростатические модели используют силу жидкости под давлением;
  • бензиновые молоты функционируют по принципу ДВС;
  • газовые используют сжиженный газ;
  • молоты электромагнитного типа для ковки используют энергии электрических и магнитных полей;
  • механические молоты запускаются физическим усилием мастера, используются мало в сравнении с иными моделями подобного оборудования;
  • рессорно-пружинные модели работают за счет того, что рессора ускоряет падение поршня вниз;
  • пневматические используют силу газа под давлением в процессе функционирования.

Отдельно стоит отметить кузнечный пневмомолот с пневмоцилиндром. Такое строение избавляет мастера от необходимости применять дополнительные источники энергии и утяжелять конструкцию. При ударе кузнечного молота по заготовке ее форма меняется согласно запланированной рабочей схеме.

Механический

Механический кузнечный молот представляет собой старое по принципу функционирования устройство, разработанное и применяемое на практике еще несколько веков назад.

Основой его конструкции является механизм, подающий усилие от мускулов человека на молот. И только спустя многие годы были сконструированы первые модели с приводами на силе воды и пара.

Основная рабочая часть механического молота сконструирована из рычага с молотом с одной стороны и массивным противовесом с другой. Его устанавливают на вал, способный качаться под воздействием на педаль или рычаг.

Механические молоты имеют ручной способ управления, поэтому такие модели можно изготовить своими силами.

Однако стоит помнить, что КПД такого оборудования в сравнении с более современными моделями довольно низкое. А габариты механики при этом довольно внушительны, что не позволяет использовать их в крохотных кузницах.

Пневматический

Молот ковочный пневматического типа причисляют к оборудованию для ковки, которое способно выполнить большой перечень операций, и в том числе скручивание, разрезание и формовку металлозаготовок.

Конструкция данного агрегата дополняется масляным насосом, смазывающим рабочие цилиндры специальным составом, а шабот ковочного пневмомолота придает ему максимальную устойчивость.

Чертеж пневматического молота.

Молоты устанавливаются в единичном количестве и снабжаются индивидуальной компрессорной установкой. Они не отличаются большой массой падающих частей, потому могут применяться для ковки малых по размеру изделий.

Зачастую, пневмомолот оснащается С-образной станиной, скрепляющейся для жесткости посредством боковых стоек. Штамповочная зона пневматического молота открыта с трех сторон, что значительно упрощает его обслуживание.

Молот пневматический кузнечный управляется с помощью ручного рычага или педали и может применяться в двух направлениях:

  • для выполнения ковки художественного типа подойдут агрегаты, масса которых не превышает 75 кг;
  • в производстве: МПЧ 150-2000 кг.

Достоинства оборудования такого типа заключаются в следующем:

  • энергоемкость;
  • высокая чувствительность при регулировке рабочих режимов;
  • простое управление;
  • долгий срок службы.

Недостатки пневматических молотов ‒ приличные габариты, существенный вес, сложность транспортировки.

Принцип действия молота, его виды

Принцип работы молота достаточно прост. Его работа заключается в нанесении динамических ударов по заготовке главным рабочим органом – штоком, который соединён с ударником (бабой). Контроль за силой ударов и их последовательностью осуществляется специальным управляющим устройством.

Конструктивные элементы, присутствующие в кузнечном ковочном молоте любой модели:

  • поршень, с которым соединена баба;
  • опорная часть станка;
  • подвижные узлы молота, связанные со станиной;
  • привод станка;
  • ограждение, обеспечивающее безопасность человека;
  • электрооборудование.

В конструкциях кузнечных молотов, используемых ранее, имелся привод ножного или ручного действия. На современных станках чаще используется иная система управления, которая сводит к минимуму физическую нагрузку на оператора.

Механический молот

В механическом кузнечном молоте энергия кривошипно-шатунного механизма передаётся поршню, который и наносит удары по заготовке. Таким путём выполняются самые различные операции кузнечными станками. Они предназначены для ковки горячего металла при изготовлении различных художественных орнаментов и многого другого. Применяя различные инструменты, с помощью механического молота можно выполнять как обрубку, обрезку заготовок, так и прокалывание любых материалов.

Раскручивание маховика в молоте механического типа осуществляется за счёт энергии встроенного электродвигателя. Управление движением ковочного элемента осуществляется с помощью ножной педали. Такие кузнечные молоты, имеющие до 60 кг падающего веса, работают как в частных мастерских, так и на металлообрабатывающих предприятиях небольшого формата.

Положительные стороны механического молота – отсутствие необходимости в работе компрессорной или масляной насосной станций, интенсивного трения поршней о цилиндры. К тому же они имеют меньшие габаритные размеры, нежели пневматические или гидравлические молоты.

Пневматический молот

Несколько по-другому работает пневматический кузнечный молот. Он имеет свой пневматический цилиндр, который с успехом заменяет кривошипно-шатунный механизм. Пневматический ковочный станок может выполнять все операции, которые можно производить с помощью механического молота. Кроме этого, с помощью пневматического молота можно выполнять формовку, разрезание и скручивание заготовок.

Управление пневматическим молотом осуществляется с помощью ножной педали или ручного рычага. Для того, чтобы рабочий цилиндр станка постоянно находился в смазанном состоянии, в его конструкцию введен масляный насос, подающий смазку ко всем трущимся деталям. В некоторых моделях станков используется даже два масляных насоса, тем самым обеспечивается минимальное трение между деталями и длительный срок службы всего механизма.

Молоты пневматического типа делят на две группы:

  • для изготовления моделей художественного содержания;
  • для производственных целей.

Художественная ковка характеризуется максимальной массой ударного элемента до 75 кг, а вот производственный молот может иметь максимальную падающую часть массой до 2 тонн. Пневматические кузнечные станки энергоёмки, они имеют рабочие режимы с тонкой регулировкой чувствительности. Отличает их также долговечность работы и простота в обслуживании. Однако в силу того, что пневматические молоты имеют большие габариты и очень массивны, их транспортировка в случае необходимости доставляет немало проблем.

Гидравлический молот

По своему устройству гидравлический кузнечный молот сильно отличается от предыдущих видов станков. Основными деталями этого молота являются шабот и стойки, в которых выполнены направляющие для движений бабы с рабочим инструментом. Также стойки являются основой для крепления насоса гидропривода с исполнительным цилиндром.

Внутренние полости штоков сообщаются с гидравлическими насосами с помощью обратного клапана. Управление гидравлическим молотом осуществляется с помощью гидрораспределителей трёхпозиционного типа. Насосы и обратный клапан связывает первый распределитель, а другой осуществляет переключение полостей штока и основного гидроцилиндра.

Полость поршня обеспечивает во время работы молота удаление масла из полости штока, при этом обеспечивается полная разгрузка гидронасосов. Это повторяется на всех рабочих режимах, расхода же масла, находящегося под высоким давлением, не происходит. Кузнечный молот с ЧПУ на гидравлике способен выполнять любые виды ковочных работ и объёмную штамповку высокой точности.

Какие бывают виды ручных молотов?

По форме части для удара кувалды делят на три типа: тупоносые, остроносые продольные и остроносые поперечные. Тупоносыми молотками кузнецы выполняют основную ковку. Ручники бывают шарообразными, продольными, поперечными. Шарообразные молотки используют для придания заготовкам округлых форм. Для получения многогранных форм применяют молотки-обжимки. Кузнецы часто используют безынерционные молотки и деревянные киянки.

Фабрика кованой мебели «Металлдекор» производит кованую интерьерную мебель, аксессуары, предметы быта. Кузнецы изготавливают изящные кровати, стулья, столы, диваны, прихожие, мебельные гарнитуры. Производят ограды, беседки, скамейки, фонари и другие изделия для дома и приусадебного участка. По желанию клиента мебель куется по индивидуальным заказам. На каждую вещь дается гарантия.

Последовательность действий

Рассмотрим схему работы с простым молотом.

  • Для выполнения удержания оператор переводит рукоятку в заданное положение. Обе камеры заполняются воздухом, ударник не касается наковальни, но при этом двигатель не выключается.
  • При подъеме рукояти цилиндр и верхняя камера заполняются воздухом, а нижняя камера изолируется. Сначала поднимается ударник, а затем боек.
  • Для выполнения непрерывных ударов оператор переводит рукоятку в заданное положение. Цилиндр и обе камеры компрессора изолируются. При опускании поршня ударник поднимается или опускается. Мощность удара регулируется рукояткой.
  • Для выполнения разового удара оператор перемещает рукоятку в положение непрерывных ударов, а возвращает в положение удержания.

мтомд.инфо

На рисунке 1 показан общий вид изучаемого пневматического приводного молота модели МА4127 с мпч 50 кг. Устройство изучаемого молота аналогично конструкции, приведенной здесь, с той лишь разницей, что в его конструкции нет редуктора (привод шатуна осуществляется через клиноременную передачу, маховик и кривошипный вал) и шабот установлен непосредственно в станине. Установка шабота в станине молота возможна вследствие малой мпч, а, следовательно, и энергии удара.

Пневматический молот. Молот ковочный пневматический.

Рисунок 1 — Молот ковочный пневматический модели МА4127 с мпч 50 кг


1 – компрессорный цилиндр; 2 – рабочий цилиндр; 3 – рукоятка среднего крана; 4 – рукоятка верхнего и нижнего кранов; 5 – приводной электродвигатель; 6 – кожух клиноременной передачи; 7 – станина молота; 8 – ось кривошипного вала; 9 – рабочие бойки; 10 – педаль управления
Пневматические молоты могут осуществлять следующие режимы работы: холостой ход, удержание бабы на весу, автоматические последовательные удары и прижим поковки. В некоторых конструкциях молотов имеется режим одиночных ударов. Для осуществления вышеуказанных режимов на пневматических молотах применяют механизм воздухораспределения, состоящий из трех горизонтальных кранов (рисунок 1, позиции 3,4): верхнего, среднего и нижнего. Верхний и нижний краны служат для управления работой молота, а средний – для перевода компрессора на холостой ход. Между верхним и нижним кранами в стакане молота имеется камера с обратным клапаном. На рисунке 2 изображена развернутая схема механизма воздухораспределения пневматических молотов. Верхний кран имеет два сечения, а нижний – три.

Рисунок 2 — Схема механизма воздухораспределения пневматических молотов

Холостой ход

Чтобы не перегревать компрессор при длительных паузах, его переводят на холостой режим работы. Это осуществляется поворотом среднего крана в крайнее левое положение (кран открыт) (см. рисунок 1, позиция 3), при этом рукоятки верхнего и нижнего кранов находятся в среднем положении (педаль также находится в среднем положении). В результате этого верхняя полость рабочего цилиндра и верхняя полость компрессорного цилиндра сообщаются через верхний кран с атмосферой через открытый канал 3 (см. рисунок 2). Нижняя полость компрессорного цилиндра также (через средний кран) сообщается с атмосферой через открытый канал 4 (при этом также открыты каналы 10 и 11). Таким образом, компрессор работает, но давление в полостях рабочего и компрессорного цилиндров равно атмосферному, и баба под собственном весом покоится на нижнем бойке. Молот работает вхолостую.

Держание бабы на весу

Рукоятка среднего крана поворачивается в крайнее правое положение (кран закрыт), а рукоятка верхнего и среднего кранов и педаль остаются в среднем положении (см. рисунок 1, позиция 3). При этом воздух из нижней полости компрессора направляется по каналу 10 сечения I нижнего крана, открытому каналу 11 и через обратный клапан 13 в камеру, находящуюся за обратным клапаном, а из камеры по открытым каналам 6 и 7 сечения III – в нижнюю полость рабочего цилиндра. При движении поршня компрессора вверх обратный клапан закрывается, отсекая поток воздуха, тем самым не допуская его выхода из нижней полости рабочего цилиндра. Верхние полости обоих цилиндров соединены с атмосферой посредством открытого канала 3 верхнего крана. В нижней полости компрессорного цилиндра на ходе вверх образуется разрежение, которое ликвидируется в крайнем верхнем положении поршня компрессора, когда полость цилиндра через отверстия в штоковой части поршня соединяется с атмосферой. Таким образом, в этом режиме поршень компрессора работает только на ходе вниз, нагнетая воздух в нижнюю полость рабочего цилиндра и тем самым, удерживая бабу на весу в крайнем верхнем положении.

Автоматические удары

Для выполнения автоматических ударов необходимо рукоятку среднего крана повернуть в крайнее правое положение (кран закрыт), а рукояткой или педалью верхний и нижний краны в процессе ковки поворачиваются против часовой стрелки от своего среднего положения (см. рисунок 1, позиция 4 или 10). При этом верхние полости рабочего и компрессорного цилиндров соединяются между собой. Для этого в сечения I – нижнего и II – верхнего кранов должны быть открыты каналы 1 и 2, 10 и 8. Молот будет совершать n ударов в минуту, равное числу оборотов кривошипа. Верхняя полость компрессорного цилиндра в крайнем верхнем положении для пополнения воздухом соединяется с атмосферой через отверстия, выполненные на торцевой части поршня. Энергия автоматических ударов возрастает с увеличением угла отклонения ручки от среднего положения. При отклонении ручки на 45° достигается максимальная энергия ударов.

Прижим поковки

Рукоятка среднего крана находится в крайнем правом положении, а рукоятка или педаль верхнего и нижнего кранов под действием пружины поворачивается на 45° по часовой стрелке от среднего положения, при этом фиксатор рукоятки должен быть опущен вниз (см. рисунок 1). В результате этого верхняя полость компрессорного и нижняя полость рабочего цилиндров сообщаются с атмосферой через открытые каналы 3 и 9. При ходе поршня компрессора вниз нижняя полость компрессорного и верхняя полость рабочего цилиндров сообщаются между собой через открытые каналы 10 и 11 и через обратный клапан 13 и открытый канал 5, при этом каналы 2, 8 и 6 закрыты. При ходе поршня компрессора вверх в нижней полости компрессорного цилиндра образуется разрежение, которое ликвидируется, когда поршень компрессора будет находиться в крайнем верхнем положении и нижняя полость компрессора через отверстия в штоковой части поршня сообщается с атмосферой. На каждом ходе поршня компрессора вниз воздух нагнетается в верхнюю полость рабочего цилиндра, создавая усилие прижима поковки, которое может достигать 8,5 кН. Избыток воздуха стравливается обратным клапаном 12 в атмосферу.

Единичные удары

Для получения единичных ударов воздухораспределитель не имеет специального устройства. В этом случае рукоятка и педаль управления должны первоначально находиться в положении, соответствующем режиму «Холостой ход». Затем резким поворотом рукоятки или нажатием педали переводят верхний и нижний краны в положение, соответствующее режиму «Автоматические удары», и быстро отпускают их. В результате баба вначале поднимается, а затем под действием пружины верхний и нижний краны возвращаются в исходное положение «Холостой ход», а баба совершает единичный удар. Энергия удара возрастает с увеличением угла отклонения рукоятки.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]